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Abstract. The time evolution of the morphology of homogeneous phases during spinodal decomposition
is described using a family of morphological measures known as Minkowski functionals. They provide
the characteristic length scale L of patterns in a convenient, statistically robust, and computationally
inexpensive way. They also allow one to study the scaling behavior of the content, shape, and connectivity
of spatial structures and to define the crossover from the early stage decomposition to the late stage
domain growth. We observe the scaling behavior L ∼ tα with α = 2/3, α = 1/2, and α = 1/3 depending
on the viscosity of the fluid. When approaching the spinodal density ρsp, we recover the prediction L ∼
(ρ− ρsp)

−1/2 for the early time spinodal decomposition.

PACS. 05.70.Fh Phase transitions: general aspects – 64.60.-i General studies of phase transitions –
47.20.Hw Morphological instability; phase changes

1 Introduction

A large variety of complex spatial structures emerge nowa-
days in many systems considered in statistical physics. We
are interested in the complex spatial distribution as well
as the dynamics of the structures. A basic problem is how
to reduce the spatial information to a finite number of rel-
evant parameters in order to find dynamical equations or
to compare experiments and theories. For instance, spatial
domains of homogeneous phases evolving during spinodal
decomposition exhibit an enormous amount of informa-
tion in their patterns, which is normally reduced to a sin-
gle time-dependent scaling length L(t).

Phase separation kinetics is probably the most conve-
nient way to generate irregular spatial patterns on a meso-
scopic scale. Such patterns arise after a sudden quench
of the homogeneous fluid phase from an initial point sit-
uated above the critical temperature, into the two-phase
coexistence region where the fluid separates into the coex-
isting liquid and vapor phases. This happens because the
homogeneous phase becomes unstable inside the spinodal
domain where density fluctuations are growing instanta-
neously, yielding an inhomogeneous distribution of vapor
phase in liquid and vice versa.

In the case of phase separation kinetics one can dis-
tinguish two different time regimes [1,2]: the early stage
of spinodal decomposition and the late stage of domain
growth. During the spinodal decomposition regime, un-
stable density fluctuations grow and form finally homoge-

a e-mail: mecke@wptsb.physik.uni-wuppertal.de

neous domains well separated by an interface. The typical
size of these homogeneous domains of coexisting phases
increases in the late stage driven by various mechanisms.

The usual approaches to the characterization of the
evolution of the single-phase domains which arise after
the quenching are mainly based on the time dependent
mean domain size R(t) which may be calculated from the
first zero of the radial distribution function, or from the
first moment of the structure factor [3,4]. Besides being
computationally expensive, the mean domain size alone
cannot account for the rich variety of geometrical shapes
of single phase domains which arise after the quenching, as
well as their connectivity. Therefore, it is useful to look for
a quantitative characterization of the morphology of spa-
tial patterns which allows one to gain relevant information
on the kinetics of many particle systems, especially when
these systems undergo phase transitions such as spinodal
decomposition [5].

In particular, we address the question whether the
morphology of the patterns scale with a characteristic
length. As mentioned, the usual method to describe the
spatial structure of the system is the density correlation
function from which one can extract a typical length scale.
But, the correlation function does not give information
about the morphology of the structure. In contrast, the
morphological measures supplied by integral geometry,
known as Minkowski functionals, which are introduced in
Section 3 of this paper provide means to define the char-
acteristic length scale, as well as a possibility to consider
the time evolution of the morphology in a convenient and
fast way. In particular, it is possible to define the crossover
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from the early stage decomposition to the late stage do-
main growth on the basis of significant changes which arise
during the time dependence of the morphological mea-
sures.

The Minkowski functionals are well known in digital
picture analysis [6,7] and integral geometry [8] when deal-
ing with the morphology of black and white discretized
images. In two dimensions, these functionals are related
to familiar geometric quantities: the area, the boundary
length and the connectivity of the spatial pattern. The
aim of this paper is to make an attempt towards the char-
acterization of the time evolution of the morphology of
phase separation, using these measures.

The paper is organised as follows. In Section 2 we give
(for completeness) a brief outline on the 2D hexagonal
lattice Boltzmann model [9–11] which was used for subse-
quent simulations. In Section 3 the Minkowski functionals
are introduced paying attention to the way their values
are computed on the 2D hexagonal lattice. Section 4 deals
with the typical time evolution of the Minkowski function-
als during the spinodal decomposition, while in Section 5
two major problems are investigated: (a) the behavior of
the characteristic length L of the spinodal decomposition
when the mean fluid density approaches the spinodal line
and (b) the existence of different scaling regimes L ∼ tα

in the late stage of domain growth.

2 Lattice Boltzmann model

Spinodal decomposition kinetics has been the subject of
considerable attention in recent years. A particular ef-
fort was focused on the identification of different scaling
regimes. Several appropriate computer simulation tech-
niques (molecular dynamics [12–14], Langevin models [15,
16], lattice gas [17–19] or lattice Boltzmann models [9–11,
20–22]) for the spinodal decomposition have been devel-
oped.

Lattice gas models for simple or complex fluids, de-
veloped in the past decade, provide a convenient tool to
study hydrodynamics [23], as well as phase separation ki-
netics [18,24]. These models always start from the micro-
scopic level, where particles move across a discrete lattice
and interact themselves via collisions and long-range po-
tentials. At the macroscopic level (i.e., at a spatial scale
larger than a lattice unit), lattice gas models are able to
simulate hydrodynamic flows, fluid mixtures including in-
terfaces, phase transitions and multiphase flows, as de-
scribed in the review paper [19] and references therein.

Lattice Boltzmann models [25,27,28], which use par-
ticle distribution functions moving on the discrete lat-
tice (instead of integer particle numbers) were subse-
quently developed in order to reduce the statistical noise
inherent to former lattice gas models, while keeping
their major advantages, in particular, the amenability
to parallel computing. For example, the modeling of the
isothermal hydrodynamics of a two phase system was
achieved in references [9–11] using a lattice Boltzmann
model on a 2D hexagonal lattice with unit vectors ei =
{cos [2π(i− 1)/6] , sin [2π(i− 1)/6]}. We use this model

to simulate time-evolving patterns whose morphological
description is the main objective of this paper. We briefly
review the method and refer the interested reader to ref-
erences [9–11] for more information.

The particle distribution functions fi(x, t) evolve in
accordance to the discretized Boltzmann equation

fi(x + cei, t+ 1)− fi(x, t) = Ωi(x, t) (2.1)

with c = 1. The collision term Ωi(x, t) is linearized in-
troducing the equilibrium distribution functions feqi , i =
0, 1, . . .6, as well as the relaxation time τ

Ωi = −
1

τ
(fi − f

eq
i ). (2.2)

The relaxation time τ has a lower bound (τ > 1/2), be-
cause of the amplification of differences from the equilib-
rium distribution feqi in equation (2.1).

The equilibrium distribution functions feqi (x) were ex-
panded as power series in the local velocity u(x)

feqi = A+Beiαuα + Cu2 +Duαuβeiαeiβ + Fαeiα

+ Gαβeiαeiβ + · · · ( i = 1, . . . , 6; α = 1, 2 )

feq0 = A0 + C0u
2 + · · · (2.3)

and the appropriate coefficients were determined using
local conservation of mass and momentum, as well as
Galilean invariance and isotropy of pressure tensor [9]

Pαβ = p δαβ + κ
∂ρ

∂xα

∂ρ

∂xβ
(2.4)

where

p = p0 − κρ∇
2ρ−

κ

2
|∇ρ|2. (2.5)

Here

ρ = ρ(x, t) =
i=6∑
i=0

fi(x, t) (2.6)

is the local particle density, the constant κ defines the
strength of the surface tension and p0 = ρψ′(ρ)− ψ(ρ) is
the state equation of the fluid.

In order to have a van der Waals fluid, the bulk free
energy density ψ has the form

ψ = ρT ln

(
ρ

1− ρb

)
− aρ2 (2.7)

where T is the system temperature. Choosing a = 9/49,
b = 2/21, the critical temperature value becomes Tc =
0.571. The spinodal densities ρ±sp at temperature T < Tc
are defined as the zeroes of the equation ψ′′(ρ) = 0. For
T = 0.550, one obtains the densities ρ−sp = 2.744 and

ρ+
sp = 4.315. Figure 1 shows the phase coexistence diagram

(T − ρ), as well as the spinodal curve (T − ρsp) obtained
from the bulk free energy density (Eq. (2.7)) with the
values of a and b mentioned above.
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Fig. 1. Phase coexistence diagram (diamonds) and the spin-
odal curve (dashed line) of the van der Waals fluid given by
the bulk free energy density (Eq. (2.7)) (a = 9/49, b = 2/21).

A particular attention was given to the computing of
the spatial derivatives of the local density ρ(x)

∇ρ(x) '
1

3

i=6∑
i=1

ρ(x + ei) ei (2.8)

∇2ρ(x) '
2

3

[
i=6∑
i=1

ρ(x + ei) − 6 ρ(x)

]
. (2.9)

These relations were obtained from the Taylor’s expansion
of ρ(x), taking into account the sum properties of the
lattice vectors ei [26].

Simulations were done on lattices with 256 × 256,
512× 512 and 1024× 1024 nodes, using periodic boundary
conditions. Each simulation run was defined by the value
of the mean density ρ, and the value of the relaxation
time τ (which gives also the value of the kinematic viscos-
ity ν = (2τ − 1)/8 [9]). Most simulations were done with
the value κ = 0.01 of the surface tension constant, which
ensures the width of the interface region between homo-
geneous phases to be approximatively 10 lattice units.

Computer runs were done as follows. The lattice sys-
tem was first initialized with a mean density ρ and 1%
random fluctuations of the local density ρ(x) were allowed
around the mean value. After each initialisation, the sys-
tem was released to evolve during 500 preliminary automa-
ton steps at the initial temperature Tin = 0.580 above the
critical one, then the temperature was suddenly changed
to the final value Tfin = 0.550. Starting from this moment
(t = 0), the system was allowed to evolve to its equilib-
rium state while snapshots were achieved at certain time
intervals. Snapshots were characterized through the cor-
responding values of the Minkowski functionals defined in
the next section.

3 Morphological measures

The morphological characterization of patterns is clearly
important to statistical physics, since complex spatial

structures emerge nowadays in many physical systems un-
der consideration. The specification of spatial patterns
requires topological as well as geometrical descriptors to
characterize not only the connectivity but also the con-
tent and shape of figures. The aim of this section is to
point out that integral geometry supplies a suitable fam-
ily of such descriptors, known as Minkowski functionals.
In a d-dimensional ambient space the number of these
functionals is d + 1. We are primarily interested in the
two-dimensional case, where the Minkowski functionals
are related with familiar measures: covered area, bound-
ary length and Euler characteristic. Integral geometry pro-
vides not only morphological measures to describe random
structures in space but also powerful theorems and formu-
lae which make the calculus convenient for many models
of stochastic geometries.

Since the methods of integral geometry are not wide-
ly-known among physicists, we compile some pertinent
facts [8] in this section. First, we introduce the notion of a
morphological measure for an homogeneous domain A as
an additive, motion invariant and conditional continuous
functional W(A). In a second step we present a theorem
which asserts that each morphological measure is a linear
combination of the d+1 Minkowski functionals in d dimen-
sions. These functionals are well-known quantities in digi-
tal picture analysis [6] and mathematical morphology [7].

3.1 Minkowski functionals

First, we define what we want to call a morphological mea-
sure. Let us consider a homogeneous domain A = ∪iKi

which can be represented as a finite union of compact
convex sets Ki (for instance, hexagons in Fig. 2). Let R
denote the class of subsets of Rd which can be represented
as a finite union of compact convex sets Ki, i.e., A ∈ R if
and only if A = ∪Ni=1Ki. Morphological measures are de-
fined as functionalsW: R→ R on homogeneous domains.
Nearly every continuous pattern can be decomposed in
convex subsets. For instance, due to a finite resolution of
the experimental equipment or due to simulations on a
lattice one has often an underlying pixel structure. Each
pixel (squares or hexagons in two dimensions) is a com-
pact, convex set and the whole pattern is the union of all
of these pixels. In Figure 2 we show an example of such a
lattice structure.

Let us now define three general properties a functional
W: R→ R should possess in order to be a morphological
measure.

(i) Additivity. The functional of the union A ∪B of two
domains A,B ∈ R equals the sum of the functional
of the single domains subtracted by their intersection

W(A ∪B) =W(A) +W(B)−W(A ∩B). (3.1)

This relation generalizes the common rule for the ad-
dition of the volume (d = 3) or area (d = 2) of two
domains. The measure of the double-counted inter-
section has to be substracted as for the volume, for
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Fig. 2. 2D array of N = 64 black and white hexagonal pixels
centered on the lattice nodes. Particles can stay at their lattice
site or they can move in six directions along the unit vectors
ei of the lattice. At each lattice site the density ρ =

∑6
i=0 fi

is given by the sum of the distribution functions fi denoting
the probability to find a particle moving in the direction ei.
“Local curvature” values are assigned to the corners of each
black pixel, as follows : corners marked “•” have the value
−2, corners marked “◦” have the value 1, while non marked
corners have the value 0.One can define the boundary length
U on the lattice by the number of edges between black and
white pixels (U = 48/N for the configuration above). The area
F is given by the number of white pixels (F = 17/N) and
the Euler characteristic χ by the sum of curvature variables
(χ = 24(−2) + 30(0) + 48(−1) = 0).

instance. Only if the volume (area) of the intersection
is zero, e.g., for two different hexagons in Figure 2,
the relation (3.1) reduces to the usual additivity.

(ii) Motion invariance. Let G be the group of motions,
i.e., translations and rotations in Rd. The transitive
action of g ∈ G on a domain A ∈ R is denoted by
gA. Then the morphological measure is invariant,

W(gA) =W(A), (3.2)

i.e., the morphological measure of a domain A is in-
dependent of its location and orientation in space.

(iii) Continuity. If a sequence of convex sets Kn converges
towards the convex set K for n → ∞, (with conver-
gence Kn → K defined in terms of the Hausdorff
metric for sets), then

W(Kn)→W(K). (3.3)

Intuitively, this continuity property expresses the fact
that an approximation of a convex domain K by con-
vex polyhedra Kn, for example, also yields an ap-
proximation ofW(K) byW(Kn). We emphasize that
we require this condition only for the morphological
measure of a convex set and not for unions of them.

In three-dimensional space we can immediately find
examples of morphological measures which obey the three
conditions (i–iii). For instance, the volume V and the sur-
face area S of a domain A are continuous, motion invari-
ant and additive. In two dimensions, the area F and the

boundary length U of a domain may be identified as mor-
phological measures in the sense described above.

Naturally, the question arises if there are other mea-
sures which obey the conditions (i–iii) and if there is a
systematic way to find such measures. In order to answer
this question we introduce the Euler characteristic χ as
a prominent member of the family of morphological mea-
sures.

The Euler characteristic is introduced first for convex
sets K by

χ(K) =

{
1, K 6= ∅ is convex,

0, K = ∅.
(3.4)

and then extended to R via the additivity relation
(Eq. 3.1),

χ(A ∪B) = χ(A) + χ(B)− χ(A ∩B) (3.5)

for any A,B ∈ R. In particular, for the union ∪Ni=1Ki of
convex domains one finds

χ(∪Ni=1Ki) =
∑
i

χ(Ki)−
∑
i<j

χ(Ki ∩Kj) + . . .

+ (−1)N+1χ(K1 ∩K2 ∩ . . . ∩KN) (3.6)

which follows from equation (3.5) by induction. The right
hand side of equation (3.6) involves only convex sets and
may be applied together with equation (3.4) to compute
χ(A) for any A ∈ R. We also note that χ: R → Z is
motion invariant and it can be shown to agree with the
Euler characteristic as defined in algebraic topology [8,29].
Since the Euler characteristic is a constant which equals
one for convex sets, it is also continuous, as required by
the condition (3.3). Therefore, the Euler characteristic is
a morphological measure in the sense given by the condi-
tions (3.1–3.3).

A remarkable theorem in integral geometry is the com-
pleteness of the morphological measures. The complete-
ness theorem [29] asserts that any additive, motion invari-
ant and conditional continuous functional W(A) defined
on subsets A ∈ R, (i.e., any morphological measure) is a
linear combination of the d+ 1 Minkowski functionals,

W(A) =
d∑
ν=0

cνWν(A), (3.7)

with real coefficients cν independent of A. Thus, every
morphological measure W(A) defined by the properties
(3.1–3.3) can be written in terms of Minkowski functionals
Wν(A). In other words, the Minkowski functionals are the
complete set of morphological measures. In d = 3 they are
related with familiar measures: covered volume V = W0,
surface area S = 3W1, integral mean curvature H = 3W2

and Euler characteristic χ = 3W3/(4π). In d = 2 the
Minkowski functionals are the covered area F = W0, the
boundary length U = 2W1, and the Euler characteristic
χ = W2/π.

An important consequence of the theorem (3.7) is
the possibility to calculate analytically certain integrals
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of Minkowski functionals [30]. The “principal kinematical
formulae”, for instance, describe the factorization of the
Minkowski functionals of the intersection A ∩ B of two
shapes A and B if one integrates over the motions, i.e.,
the translations and rotations of one of them. A special
case of the kinematical formulae is Steiner’s formula

Vε(K) =
d∑
ν=0

(
d
ν

)
Wν(K)εν , (3.8)

for the parallel volume Vε of a convex set K, i.e., for the
volume of the set of all points within a distance ε from the
domain K (dilatation). In particular, for d = 2 the change

δF ∼ Uε+O(ε2) (3.9)

in the covered area F due to an increase of the domain
is proportional to the boundary length U . The change in
the boundary length itself is proportional to the Euler
characteristic.

We emphasize that the Minkowski functional Wν is
homogeneous of order d− ν, i.e., for a dilated domain λA
one obtains

Wν(λA) = λd−νWν(A). (3.10)

This relation enables one to extract a time-dependent scal-
ing length from the morphological measures in Section 5.

Because of the properties (3.1–3.3) we expect the
Minkowski functionals to be suitable measures to charac-
terize the morphology of spinodal decomposition kinetics.
These morphological measures have already been applied
successfully to the description of microemulsions [30,31],
large scale distribution of galaxies in the Universe [32]
percolation in porous media [33] and patterns arising in
reaction-diffusion systems [34].

Before we apply the Minkowski functionals to describe
the morphology of spinodal decomposition kinetics in Sec-
tion 4, we have to introduce the way these functionals
are computed in the case of 2D digital pictures, i.e.,
2D arrays whose elements are the local gray level ρ(x)
(0 ≤ ρ(x) ≤ ρmax), associated with each image point
(pixel).

3.2 Thresholding

In order to get detailed information about the spatial
structure of spinodal decomposition we want to look at
the picture at each density level, i.e., we consider the so-
called level contours. Thus, we introduce a threshold den-
sity 0 ≤ ρth ≤ ρmax and reset the gray value at each pixel
to either white or black depending on whether the orig-
inal value is larger or lower than ρth, respectively. Here,
white corresponds to high values of the gray-level. The
qualitative features of the images change drastically when
the threshold parameter ρth is modified. For high thresh-
olds we study the regions of maximum concentration, i.e.,
we obtain information how the peaks of the profile look
like. For low thresholds we study the deep valleys of the

concentration profile and for intermediate ρth we obtain
more or less the same visual impression as from the gray-
scale pattern. Thus the spatial information we get depends
strongly on the threshold we set.

Given a threshold value ρth, the two-valued (black and
white) field P(x, ρth) is defined in accordance with

P(x, ρth) =

{
0, ρ(x) < ρth
1, ρ(x) ≥ ρth.

(3.11)

The null value of P(x, ρth) is conventionally associated
with a black pixel, while the other value is associated with
a white one. In this way, a set of black and white images
(corresponding to the different values of the threshold ρth)
may be derived from a single gray-level image and each of
these images is characterized by the corresponding field
P(x, ρth).

3.3 Digital patterns

An array of quadratic pixels is quite often the underlying
spatial structure for simulations as well as for experimen-
tal data obtained from digital recording equipments [34].
In the case of the 2D hexagonal lattice used for Boltz-
mann simulations, it would be more convenient to use this
lattice structure to calculate directly the Minkowski func-
tionals. In this case, the pixels may be imagined as hexag-
onal plates, centered on the lattice nodes (Fig. 2) and the
gray level may be associated with the local density ρ(x) in
each corresponding node. Since the distribution functions
fi(x), i = 0, . . . 6 in the lattice Boltzmann model are
normalized to unity, we have 0 ≤ ρ(x), ρth ≤ ρmax = 7.

One obvious quantity describing the morphological dif-
ferences in the images P(x, ρth) is the relative white area,
F (ρth) i.e., the number Nρth of the pixels in the original
image having the corresponding gray level ρ(x) greater
than ρth, normalized by the total number N of pixels

F (ρth) =
Nρth
N

=
1

N

∑
x

P(x, ρth). (3.12)

This quantity decreases from 1 to 0 when the threshold
value ρth is increased from 0 to the maximum value ρmax.

Another morphological quantity is U(ρth), defined as
the ratio between the total length Bρth of the boundary
lines separating black and white regions, normalized by
the total number of pixels. To determine Bρth , one has to
count the numbers of pairs of neighbored black and white
pixels, i.e., for the 2D hexagonal lattice

U(ρth) =
Bρth
N

=
1

N

∑
P(x,ρth)=0

i=6∑
i=1

P(x + ei, ρth). (3.13)

This quantity always vanishes when ρth equals its bound-
ing values (i.e., 0 and 7 in the case of our lattice). We
note that the boundary length Bρth does not converge to
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the continuous boundary length for a vanishing lattice
spacing.

The third quantity of interest, the Euler characteristics
χ(ρth), is defined in two dimensions as the difference be-
tween the number of black (N b

ρth
) and white (Nw

ρth
) finite

single domains

χ(ρth) = N b
ρth
− Nw

ρth
. (3.14)

We do not normalize the Euler characteristic by the total
number of pixels in order to keep integer numbers. This
quantity describes the connectivity of the domains in the
lattice and, e.g., it equals −1 when one has a black drop
in a large white lattice and +1 vice versa.

Despite its global meaning, the Euler characteristics
may be calculated in a local way, as already suggested
in the case of a square lattice [34]. Figure 2 shows some
hexagonal black and white plates covering the nodes of the
2D hexagonal lattice. We assign to each corner of a black
pixel the values −2, 1 or 0 depending on the “local curva-
ture”. According to Figure 2, the local curvature value is
−2 if both of the two nearest neighbors joining at the cor-
ner are white, it is 1 if the two nearest neighbors joining
there are different, and it is 0 when both nearest neigh-
bors are black. Then the value of the Euler characteristics
is given by (e7 ≡ e1)

χ(ρth) =

1

12

∑
P(x,ρth)=0

i=6∑
i=1

[
− 2P(x + ei, ρth)P(x + ei+1, ρth)

+ P(x + ei, ρth) [ 1− P(x + ei+1, ρth) ]

+ [ 1 − P(x + ei, ρth) ] P(x + ei+1, ρth)
]
. (3.15)

One can easy verify that equation (3.15) gives 0 for the
case shown in Figure 2 and +1 for a single white drop
independently of its shape.

It can be shown that this definition of χ possesses a
continuum limit for smooth boundaries, which is equal
to the integral of the curvature along the boundary lines
[8,29]. Thus, χ/(UN) describes the mean curvature of the
boundary line separating black and white domains.

4 Time evolution of Minkowski functionals

We show in Figure 3 the typical time evolution of the local
density across a 256 × 256 lattice after an off-symmetric
quench (ρ = 3.0) from the initial temperature Tin = 0.580
to the final temperature Tfin = 0.550. At early times, one
observes the decay of the unstable homogeneous phase as
a result of the growth of density fluctuations. This spin-
odal decomposition regime is followed by the growth of
homogenous droplets of the minority phase. Since the sur-
face tension tends to reduce the interfacial energy, the high
density phase evolves to a single domain having a circular
shape (this final state is not shown in Fig. 3).

In contrast to Figure 3 we show in Figure 4 the typi-
cal time evolution of the local density across a 512 × 512

Fig. 3. Time evolution of the local density ρ(x) across a
256 × 256 lattice at t = 150, t = 200, and t = 1000 after
the quench at t = 0 (ρ = 3.0, κ = 0.01, τ = 0.6). Because
of the

√
3/2 scaling factor on the vertical direction, the shape

of the real domain is rectangular. White regions correspond to
the high density phase which is the minority phase at ρ = 3.0.
One can clearly observe the different regimes: the early time
spinodal decomposition at t < 200 and the late stage growth
of homogeneous domains.

lattice after a nearly symmetric quench (ρ = 3.45). In this
case, neither the high nor the low density domains dom-
inate and, consequently, a bicontinuous pattern evolves.
The morphology in Figure 4 is clearly different from the
pattern shown in Figure 3, where isolated droplets of the
minority phase occur. These qualitative features gained by
visual inspection may be quantified using the Euler char-
acteristic χ, which measures the connectivity of structures:
χ vanishes in the last case, but has large positive values
for the droplet structure. We expect the Minkowski func-
tionals to be especially fruitful for the analysis of spinodal
decomposition kinetics in three dimensions where the bi-
continuous pattern is not restricted to a single density as
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Fig. 4. Time evolution of the local density across a 512× 512
lattice at t = 200, t = 400, and t = 1000 after the quench at
t = 0 (ρ = 3.45, κ = 0.01, τ = 0.6). White regions correspond
to the high density phase. In contrast to Figure 3, the time
evolution is nearly symmetric, i.e., black and white domains
evolve in an equal way leading to an interwoven bicontinuous
pattern.

in the two-dimensional case but occurs in a large density
region.

4.1 Dependence on threshold density ρth

First, we study the dependence of the morphological mea-
sures on the threshold density ρth. Figure 5 shows the cor-
responding Minkowski functionals calculated at the same
moments as the snapshots in Figure 3. The early stage
phase separation is evidentiated in Figure 5a by the dis-
placement of the F (ρth) curve towards higher and respec-
tively lower densities which corresponds to the formation
of homogeneous domains with sharp boundaries. The two
sharp kinks of F (ρth) are located at the coexisting mean
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Fig. 5. Time evolution of the Minkowski measures depending
on the threshold (computed at the same moments correspond-
ing to the snapshots in Fig. 3). The two different regimes of the
time evolution show up in the functional form of the measures.
For early times one observes a strong threshold dependence
of the measures due to the time evolution of the interfacial
region between the homogeneous phases during spinodal de-
composition. For late times the connectivity χ, for instance, is
constant between the densities of the homogeneous phases in-
dicating well-defined interfaces, whereas for early times t < 200
no such homogeneous domains exist. Because after t ≈ 200 no
significant threshold dependence occur in the measures, one
can set the threshold to the medium density ρth = 3.5 in order
to study the domain growth.



106 The European Physical Journal B

densities of the homogeneous domains at Tfin = 0.550,
namely ρgas = 2.236 and ρliquid = 4.839, respectively.
The functional form of F (ρth) is related to the interface
profile between the homogeneous domains which sharp-
ens during the spinodal decomposition. Additionally, the
slope of F (ρth) in the central region decreases because the
total volume of the interface region is reduced during this
process, as a result of coalescence of high density domains.
The slopes of U(ρth) and χ(ρth) exhibit the same behavior
in the central region, as one can see in Figures 5b and 5c.

Generally, one observes a crossover in the functional
form of the measures, which is most clearly seen in the
time evolution of the Euler characteristic χ(ρth) shown
in Figure 5c. For times t < 200, the dependence on the
threshold is determined by the sharpening of interphase-
boundaries, i.e. by the formation of homogeneous do-
mains. The sharp peaks of negative connectivity in Fig-
ure 5c, for instance, is an artificial threshold phenomena
due to noise in the initial density distribution because at a
given threshold a lot of white pixels show up inside black
domains before the whole region turns white. But after
t ≈ 200, the Euler characteristic becomes constant over
a large interval determined by the coexisting densities,
indicating that the connectivity does not depend on the
threshold anymore, i.e., that well-defined domains exist.

In Figure 6 we show the general appearance of the time
evolution of the Minkowski functionals for three values of
ρth at a typical mean density of the fluid (ρ = 3.0). A first
general feature of these curves is that, for early times, i.e.,
before t ≈ 200, a strong dependence on ρth is observed due
to the forming of sharp interfaces, as already mentioned
when discussing the graphs in Figure 5.

For times t > 200 the differences become less and less
pronounced. The still remaining differences in F (t) are re-
lated to the density profile which interpolates smoothly
between the coexisting densities. For a sharp kink profile
no dependence on the threshold ρth would be registered.
But changing the threshold yields changes of the area of
white domains if the density profile is smooth, i.e., one
gets parallel borders situated at a distance ε(ρth) depend-
ing on ρth. Using the relation (3.9) one obtains that the
differences of the white area F (t) (boundary length U(t))
is proportional to the boundary length U(t) (Euler char-
acteristic χ, respectively).

Because no significant threshold dependence of the
Minkowski functionals is observed after t ≈ 200, the
threshold will be set further to the medium density value
ρth = 3.5, when not mentioned otherwise.

4.2 Crossover from spinodal decomposition to domain
growth

In Figure 6 we have already shown the time dependence of
the morphological measures F (t), U(t) and χ(t) for an off-
symmetric quench (ρ = 3.0), where the fluid phase is the
minority phase. In this figure, one can distinguish two dif-
ferent time regimes: the early stage of spinodal decompo-
sition and the late state of domain growth. At early times,
the growth of density fluctuations leads to the build up of
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Fig. 6. Time evolution of the morphological measures F , U ,
and χ for three different thresholds, ρth = 3.0, 3.5, 4.0, at the
mean density ρ = 3.0 and the parameters κ = 0.01, τ = 0.60.
After t ≈ 200 no significant threshold dependence occur in the
measures, the differences are proportional to the relative vol-
ume of the interfacial regions between high and low density
domains, i.e., to the boundary length U . One can distinguish
two different time regime: an early stage spinodal decompo-
sition with increasing measures (in particular, U and χ) and
a late stage domain growth with decreasing boundary length
U and Euler characteristic χ. The maximum values Ū and χ̄
define the transition time t̄.

interfaces between homogeneous domains of the two coex-
isting phases. This process is accompanied by an increase
of white area F belonging to the liquid phase, as well as
of the boundary length U of the interface. Also the Euler
characteristic increases during this stage, because many
disconnected components of the minority phase arise. In
contrast to this early stage, the late stage domain growth
is characterized by a decrease of the quantities U and χ,
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which is a direct consequence of the increase of the char-
acteristic length scale of the homogeneous domains.

The area of the liquid phase approaches the final value

F (t→∞)→
ρ− ρgas

ρliquid − ρgas
(4.1)

which is given by the level rule of the coexistence region
shown in Figure 1. The oscillations of F (t) in Figure 6a
indicate shape fluctuations of the domains driven by the
surface tension and the inertia of the fluid. These oscil-
lations are intimately related to the formation of sharp
interfaces which relax to their equilibrium value after the
initial decomposition growth of the density fluctuations.
Moreover, the oscillations are less favored at higher fluid
viscosities established when using greater values of the re-
laxation time τ .

Because of the demixing of the phases, i.e. the growth
of the domains, the boundary length U and the Euler char-
acteristic approach their final minimum values

U(t→∞)→ 8

√
F

πN
, χ(t→∞)→ 1 (4.2)

which correspond to a single liquid drop with area F , im-
mersed into the vapor phase. Their maximum values Ū
and χ̄ mark the transition from the early stage increase to
the late stage decrease, i.e. the crossover from the phase
development during decomposition and the the successive
domain growth. Consequently, their positions t(Ū) and
t(χ̄) may be used to define the transition (crossover) time
t̄ which marks the onset of domain growth and the end of
the spinodal decomposition. Although the values of t(Ū)
and t(χ̄) generally differ slightly, the difference is quanti-
tatively not relevant and both times mark the same transi-
tion in the time evolution. We will conventionally use the
maximum of the boundary length U to define the tran-
sition time, i.e., t̄ := t(Ū). We note that it is difficult
to determine the transition between these two obviously
different dynamic regimes by analyzing, for instance, the
time evolution of the correlation function instead of the
time evolution of the morphology.

As a further example of possible applications of the
morphological measures we discuss the dependence of the
morphology on the surface tension κ. In Figure 7 we show
the time evolution of the Minkowski functionals for three
values of the surface tension κ when the relaxation time
τ is kept constant. The amplitude of the oscillations of
the white area F decreases when decreasing κ, i.e., these
oscillations are driven by surface tension which become
important after the formation of the interfaces. The dif-
ferences between the final values of F are related to the
smooth density profile between the homogeneous phases
determined by the surface tension. The interface region
between the phases achieves a significant width for larger
values of κ and, consequently, a decrease of the white area
F is observed if the threshold is fixed. One can see that
the growth process of the homogeneous domains at late
times is also driven by the surface tension, i.e., the de-
cay process of U(t) and χ(t) towards their final values
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Fig. 7. Time evolution of the Minkowski measures for three
different surface tensions κ = 0.002, 0.005, 0.01. (ρ = 3.0,
τ = 0.8, ρth = 3.5). The oscillations are driven by surface
tension, i.e., they vanish if κ is decreased.

becomes reduced when decreasing κ. On the contrary, the
early time behavior is not affected significantly by the sur-
face tension κ. In particular, the crossover time t̄ from
spinodal decomposition to domain growth has no signifi-
cant dependence on κ. The maximum value of the bound-
ary length Ū(κ) shown in Figure 7b decreases if κ is in-
creased, because the domains become more spherical. This
is the same reason, why the connectivity χ increases, be-
cause bridges between droplets break due to the decrease
of boundary length. Thus κ has a relevant influence on the
shape of the domains but does not influence significantly
the characteristic length scale.

5 Scaling regimes

If the inhomogenous pattern consists of homogeneous do-
mains with sharp interfaces, i.e., if well-defined domains
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exist, the domain growth process is achieved via the rear-
ranging of domains without changing the relative area F
of the liquid phase which is given by the level rule in equa-
tion (4.1). Because the measures Wν(A) are homogenous
functions of order d − ν (see Eq. (3.10)), we assume the
following scaling behavior of the Minkowski functionals

F ∼ 1, U ∼ L−1, χ ∼ L−2 (5.1)

with the scaling length L. We have tested this assump-
tion concerning the scaling behavior of the morphology
by changing system parameters as surface tension κ and
relaxation time τ , and looking for the same functional be-
havior of U2 and χ.

There are other possibilities to define characteristic
length scales of spatial patterns such as the first zero of
the correlation function or the first moment of the wave-
length distribution [3,4]. These definitions of the charac-
teristic length, although widely used by many authors, are
recognized to be computationally expensive [14]. The def-
inition of the characteristic length L which is introduced
using the scaling relation (5.1) allows a faster computation
algorithm (it does not involve Fourier transformation, but
only pixel counting) and has also a direct geometric inter-
pretation. Additionally, we have the possibility to look for
the scaling of the morphology given by the relations (5.1),
i.e., to test the scaling ansatz U ∼ L−1 and χ ∼ L−2.

5.1 Early stage decomposition

The possibility to distinguish between the early time spin-
odal decomposition and the late stage domain growth,
which are delimited by the transition time t̄, enables to
study the length scales and characteristic times at the
very beginning of the phase separation. In particular,
when approaching the spinodal density ρsp, the length
L̄ computed at the transition time t̄ is expected to de-
pend strongly on the viscosity τ and the density ρ. The
length L̄ can be defined starting either from the Euler
characteristic L̄χ := χ(t̄)−1/2 or from the boundary length
L̄U := U(t̄)−1. We expect the same functional dependence
in both cases, except for a constant. The length scale L̄
does not depend significantly on the surface tension κ as
one can see in Figure 7 where the maximum value of the
boundary length Ū(κ) and of the Euler characteristic χ is
quite constant.

In order to test the scaling assumption (5.1) we study
the dependence of L̄χ and L̄U on the parameter τ , i.e.
the viscosity. For fixed κ = 0.01 one observes that the
position t̄ of the maximum values is displaced towards
larger times if τ is increased, i.e., t̄ ∼ τ and the relevant
time variable is t/τ (see Fig. 8). For the same reason we
observe that the frequency ω ∼ η/ρ = ν of the shape
oscillations depends on τ and that the amplitudes of the
oscillations are suppressed for large viscosities.

The maximum values Ū of U(t), as well as χ̄ for the
Euler characteristic decrease when increasing the viscos-
ity. Thus, the characteristic length scale L̄ = L(t̄) ∼ t̄ at
the end of the decomposition regime (beginning of the do-
main growth) increases linearly with the transition time t̄
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Fig. 8. Dependence of the characteristic length scales L̄χ :=
χ(t̄)−1/2 (open circles) and L̄U := U(t̄)−1 (filled circles), as
well as of the onset of domain growth t̄ (stars) on the viscosity
τ (κ = 0.01).

indicating a density independent mean velocity L̄/t̄ of the
fluid particles during the early stage. Moreover, one can
see in Figure 8 that the length scales L̄χ ∼ L̄U exhibit
the same functional dependence on τ as predicted by the
scaling assumption (5.1).

We address now the question how the morphological
measures, i.e., the Euler characteristic χ̄ := χ(t̄) and the
boundary length Ū := U(t̄) at the onset of domain growth
depend on the mean density ρ. In Figure 9 we show some
snapshots of the local density across a 256 × 256 lattice,
which were taken at the crossover time t̄ for fixed param-
eters κ = 0.01, τ = 0.8, and ρth = 3.5, but for different
mean densities ρ. One can clearly observe the dependence
of the morphology at the onset t̄ of domain growth vs. the
mean density ρ, which is expressed by subsequent changes
in the characteristic length scale L̄, as well as in the con-
nectivity measured by the Euler characteristic χ.

In Figure 10 we show χ̄ and Ū for different mean den-
sities ρ at the same fixed parameters as the snapshots in
Figure 9. First we note that we obtain a spinodal decom-
position only in the density interval between the spinodal
densities ρ−sp = 2.744 and ρ+

sp = 4.315 at T = 0.55 given
by the instability condition ψ′′(ρ) ≤ 0. One observes a
parabolic behavior for Ū(ρ) with a maximum for the bi-
continuous patterns at the symmetric density ρ = 3.5.
The Euler characteristic χ̄(ρ) (mean curvature) is posi-
tive as long as the high density phase (white domains) is
the minority phase forming many droplets within a sea of
low density phase for ρ < 3.5. It becomes negative in the
opposite case, according to equation (3.14), and zero for
the symmetric decomposition indicating a vanishing mean
curvature of the boundary lines.

It is interesting that, in the limiting case ρ → ρsp,
i.e., when approaching the spinodal density ρ−sp = 2.744
at T = 0.550, we find the scaling behavior

L̄(ρ) ∼ (ρ− ρ−sp)
−1/2 (5.2)

for the characteristic length of the early stage spinodal
decomposition (shown in Fig. 11). The spinodal density



V. Sofonea and K.R. Mecke: Morphological characterization of spinodal decomposition kinetics 109

Fig. 9. Snapshot of the local density across a 256×256 lattice
at the crossover time t̄ for different mean densities (a) ρ = 2.76,
t̄ = 1140; (b) ρ = 3.0, t̄ = 330; (c) ρ = 3.5, t̄ = 280. The param-
eters κ = 0.01, τ = 0.8, ρth = 3.5 are held constant. The char-
acteristic length scale L(t̄) at the onset of the domain growth
t̄ increases when approaching the spinodal density ρ−sp = 2.744
whereas the connectivity decreases. The bicontinuous struc-
tures changes into a droplet phase which can be measured by
the Euler characteristic χ shown in Figure 10.

ρ−sp found in the simulation is slightly below the predicted
value given by the instability of the mean-field free energy
(2.7). The scaling behavior (5.2) is consistent with the
prediction of the Cahn-Hilliard theory for the growth of
instable density modes [1]. For the onset time t̄ we observe
a similar behavior (see inset of Fig. 11)

t̄(ρ) ∼ (ρ− ρ−sp)
−1/2 ∼ L̄(ρ) (5.3)

indicating a density independent mean velocity L̄/t̄ of the
fluid particles during the early stage, which depends only
on the temperature T . Cahn’s linear theory of spinodal de-
composition predicts for the time scale ω−1 ∼ (ρ− ρ−sp)
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Fig. 10. Dependence of the Euler characteristic χ(t̄) and the
boundary length U(t̄) at the onset of domain growth on the
mean density ρ (Same parameters as in Fig. 9). These mea-
sures describe the morphology of the patterns during spinodal
decomposition at the mean density ρ. One observes a parabolic
behavior for U(ρ) with a maximum for the bicontinuous pat-
terns at the symmetric density ρ = 3.5. The Euler character-
istic (mean curvature) is positive as long as the high density
phase (white domains) is the minority phase forming many
droplets within a sea of low density phase for ρ < 3.5. It is
negative according to equation (3.14) in the opposite case and
zero for the symmetric decomposition indicating a vanishing
mean curvature of the boundary lines.

of the fastest growing mode when approaching the spin-
odal density, i.e., a much faster increase than for t̄.

5.2 Late stage domain growth

After the crossover time t̄, the volume F (t) has ap-
proached the final value given by equation (4.1). Despite
the oscillations, we can consider this value as constant,
because the domains are well-formed now. The time de-
pendence of F (t), i.e., the relaxation to its final value is
proportional to the boundary length U(t) (see the depen-
dence on the threshold ρth).

In Figure 12 we show the time dependence of U−1(t)
and χ−1/2(t), i.e., the length L(t) as function of time, in
accordance with the relation (5.1). We observe the scaling
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Fig. 11. Dependence of the characteristic length scale L̄(ρ) ∼
(ρ − ρ−sp)

−1/2 at the onset of domain growth t̄ on the mean
density ρ for three different viscosities (τ = 0.6 diamonds, τ =
0.7, squares, τ = 0.8 triangles). The length L can be measured
by the Euler characteristic L̄χ := χ(t̄)−1/2 (open symbols) or
by the boundary length L̄U := U(t̄)−1 (filled symbols). The
inset shows the dependence of the time scale t̄ of the spinodal
decomposition on the mean density ρ. Again, the crossover
time t̄(ρ) ∼ L̄(ρ) can be measured (arbitrary units) using the
maximum of the Euler characteristic (open symbols) or the
maximum of the boundary length (filled symbols), respectively.
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Fig. 12. Time evolution of the morphological measures U(t)
and χ(t) at different viscosities (ρ = 3.0, κ = 0.01, τ = 0.60).
The boundary length w1/U(t) (dashed line), and the con-
nectivity w2/χ(t)−1/2 (thick solid line) show the scaling re-
lation (5.1) with the exponents α = 2/3 (τ = 0.53, w1 = 1,
w2 = 400), α = 1/2 (τ = 0.6, w1 = 0.5, w2 = 1000), and
α = 1/3 (τ = 1.5, w1 = 0.5, w2 = 80) indicated by thin solid
lines. The coefficients wi are chosen to separate the data.

behavior

L(t) ∼ tα (5.4)

with a scaling exponent α depending on the relaxation
time τ (i.e., the viscosity). We find three different scal-
ing regimes, characterized by α = 2/3 for low viscosities
(τ = 0.54), α = 1/2 for intermediate values (τ = 0.8), and
α = 1/3 for high viscosities (τ = 1.5). The later one was
not reported in reference [10], but is well-established by
the Lifshitz-Slyuzov-Wagner theory [1]. For intermediate

relaxation times τ we observe a crossover from one scal-
ing exponent to the other, for example, from 2/3 (early
times) to 1/2 (late times) at τ = 0.6. At higher viscosities
we do not observe scaling at all at least up to t ∼ 106 time
steps. For an off-symmetric quench the homogeneous do-
mains are near-spherical droplets. We can define the mean
curvature radius of these droplets by R(t) := U(t)/χ(t).
This quantity shows scaling even for large domains at late
times.

In contrast to reference [10] we interpret the scaling
regime with α = 2/3 not as the regime for long times
although it is found for small viscosities. It is the same
regime where we observe the strong oscillations in F (t)
and U(t). As long as the fluid velocities are not damped
by viscous forces the kinetic terms in the Navier-Stokes
equation are dominant. This is the very early regime after
spinodal decomposition and it can be seen only if the ve-
locities are not damped by viscous forces. These velocities
established at the beginning of the phase separation have
little to do with the velocities established during domain
growth, which are relevant for the exponent α = 2/3 at
very late times. The late stage accessible in our simula-
tions is the regime with α = 1/2 and α = 1/3 which can
be clearly seen in Figure 12.

We did several runs using the same parameters and
obtained identical behavior. Therefore, the data we show
in Figure 6 are obtained after individual runs without any
averaging procedure, because such a procedure is not nec-
essary in order to obtain accurate results. We emphasize
that the statistical robustness of the morphological mea-
sures is essential for the determination of the length L, es-
pecially for small system sizes and for the late stage regime
where statistical fluctuations become important. Gener-
ally, fluctuations of the measures are small due to the ad-
ditivity relation (3.1) in contrast to the domain size cal-
culated from the first zero of the radial distribution func-
tion. Therefore, one can extract reliable values for L from
the morphological measures even in cases where this is
not possible using the correlation function. The statistical
robustness of the morphological measures is particularly
demonstrated when determining the exponent α = 1/3.
As mentioned before, this exponent was not observed by
other means using similar computer facilities.

We note that the calculation of U is less expensive than
the calculation of the domain size R(t), even when using
Fast Fourier Techniques. For a 512× 512 lattice, we need
≈ 1.5 minutes on the CM-5 machine to do 1000 lattice
updates including the calculation of Minkowski measures,
while for the calculation of R(t) alone we need ≈ 8 min-
utes on the same lattice, despite the great effort made
towards the optimization of the computing speed.

Finally, we mention that the time dependences of the
Euler characteristic and the boundary length shown in
Figure 12 are different in the beginning of the growth
process. For instance, the slope for χ−1/2(t) (solid line)
at τ = 1.5 (α = 1/3) is much smaller than for U−1(t)
(dashed line) at times t < 5000. This indicates a change
of the morphology, i.e., of the domain shape at early times.
But the late stage scaling behavior is not affected by
this initial rearrangement of the homogeneous phases. In
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reference [35] the same morphological measures – which
were already introduced in reference [5] – are used to study
the morphology of spinodal decomposition in binary flu-
ids. The observed’ breakdown of scale invariance in the
coarsening of phase-separating binary fluids’ reported in
reference [35] and, in particular, the statement that this
happens at all times is related to the symmetry of the
phases. Unfortunately, they do not report results for later
times where a crossover to identical scaling behavior may
occur. Also system parameters such as viscosity or surface
tension are not given in reference [35] which are necessary
to repeat or evaluate their data. The breakdown of scale
invariance for a one-component fluid was already observed
in reference [5] but only for early times.

6 Conclusions

The aim of this paper is to make an attempt towards the
characterization of the time evolution of the morphology
of phase separation, using morphological measures defined
by the equations (3.1–3.3). For this purpose we use a lat-
tice Boltzmann model on a 2D hexagonal lattice achieved
in references [9–11] to model the isothermal hydrodynam-
ics of a two phase system. A comparison of our results
with simulations of Ginzburg-Landau models will be done
in future work in order to elucidate, for instance, the dif-
ferences between conserved and non-conserved order pa-
rameters.

Here, we focused on the general method and the ad-
vantages of using morphological measures to analyze in-
homogeneous structures. Hadwiger’s theorem (3.7) asserts
that a morphological measure can be represented as a sum
of d+ 1 Minkowski functionals which are familiar geomet-
ric quantities (in particular, for d = 2 these are the Euler
characteristic χ, the covered area F , and the boundary
length U).

In contrast to correlation functions, the Minkowski
functionals are sensitive to changes in the shape and con-
nectivity of the domains. We observe the scaling behav-
ior (5.1) of the Minkowski functionals Wν which makes
it possible to define a characteristic length scale L of the
domains. We obtain accurate values of the scaling expo-
nent α for various hydrodynamic regimes (see Eq. (5.4)).
In particular, we observe the α = 1/3 behavior predicted
by Lifshitz-Slyuzov-Wagner theory but not reported pre-
viously from the analysis of correlation functions of lattice
Boltzmann simulations [9–11].

It is possible to observe the crossover from the early
stage decomposition to the late stage domain growth and
to obtain a clear definition of the early time regime of
spinodal decomposition. We analyzed the morphology of
patterns at early times and recovered the scaling behav-
ior (5.2) for the decomposition regime when approaching
the spinodal density predicted by the Cahn-Hilliard the-
ory. Additionally, we obtained an immediate test of the
scaling assumption of the morphology during spinodal de-
composition and domain growth.

We want to emphasize that the calculation of the mor-
phological measures is convenient and fast because one has

to count only pixels. The definition and calculation of the
characteristic length scale L by using the scaling of the
morphological measures U and χ instead of the correla-
tion function makes possible a considerable decrease in
the computational effort of the simulation.

Even more important for the determination of the
length L is the statistical robustness of the morphologi-
cal measures due to the additivity relation (3.1), which
allows reliable values for L from the morphological quan-
tities even if the system size is small or in the late stage
regime, where the number of homogeneous droplets vanish
and statistical fluctuations become important.

There are two open questions which will be addressed
in further work. First, we observe a possible scaling behav-
ior with α = 1 for high viscosities, but with different scal-
ing behavior for U and χ during the early time regime. The
different scaling seems to indicate a change in the shape of
typical domains. Second, the morphological measures are
a promising tool in three dimensions since the topology of
the patterns changes even more drastically with the mean
density ρ than in two dimensions. In particular, one finds
a whole region of densities where the pattern is biconti-
nous. Since the late stage growth is expected to depend
on the topology of the spatial structure, the morphologi-
cal measures may provide means to study the dependence
of the scaling behavior on the morphology.

The simulations were carried out on the CM-5 parallel machine
at BUGH Wuppertal. V.S. is indebted to Professor Siegfried
Dietrich for providing the possibility of a stay in his department
and acknowledges also the financial support of the Romanian
Ministry of Research and Technology, supervised through the
Romanian Space Agency.
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